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Asymptotic Degeneracy of the Transfer Matrix 
Spectrum for Systems with Interfaces: 
Relation to Surface Stiffness and Step Free Energy 
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Two- and three-dimensional Ising-type systems are considered in the finite- 
cross-section cylindrical geometry. An interface is forced along the cylinder 
(strip in 2d) by the antiperiodic or + - boundary conditions. Detailed predic- 
tions are presented for the largest asymptotically degenerate set of the transfer 
matrix eigenvalues. For rough interfaces, i.e., for 0 < T <  Tc in 2d, TR < T<  Tc 
in 3d, the eigenvalues are split algebraically, and the spectral gaps are governed 
by the surface stiffness coefficient. For "rigid" interfaces, i.e., 0 < T <  T R in 3d, 
the eigenvalues are split exponentially, with the gaps determined by the step free 
energy. 

KEY WORDS: Phase transitions; surface tension; surface stiffness; step free 
energy; finite-size correlation lengths. 

1. I N T R O D U C T I O N  

The transfer matrix (TM) method has been extremely useful in calculating 
critical-point properties of a variety of 2d models. ~1) Recent advances in 
large-scale computing and combination of the TM and Monte Carlo 
techniques have made applications to 3d systems feasible. ~2'3) Away from 
criticality, the TM spectrum may yield information not only on the bulk 
thermodynamic quantities, but also on various interfacial properties (below 
Tc). For Ising-type systems with periodic boundary conditions the leading 
spectral gap for T<  Tc is related to the surface tension. ~4'5) This feature will 
be considered in detail in Section 2, where we also introduce the general 
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formalism of the asymptotic degeneracy of the largest TM eigenvalues. 
Note that for the n-vector spin systems, the leading spectral gaps are 
determined by the helicity modulus. (6) 

Although we focus on Ising-type models, our considerations are exten- 
dible to other scalar spin systems with several coexisting phases which are 
not related continuously (i.e., no Goldstone or spin-wave modes are 
possible). Thus, the phases will be separated by sharp interfaces (instead of 
diffuse Bloch walls). Specifically, we consider 2d and 3d Ising-type systems 
in the cylindrical geometry, with an interface induced by the + -  or 
antiperiodic (ap) boundary conditions. Recent studies (7<1) in 2d have 
revealed certain unexpected features of TM spectrum for nonperiodic 
boundary conditions. Our main 2d result, derived in Section 3 and further 
checked by solid-on-solid model and some exact calculations in Section 4, 
is that the spectral gaps for both + -  and ap boundary conditions are 
governed by the surface stiffness coefficient. The results are summarized by 
Eqs. (3.23)-(3.24). 

In 3d, below the roughening temperature T~, we argue, in Section 5, 
that the spectral gaps are determined by the step free energy, as sum- 
marized by relations (5.14)-(5.17). For the 3d case with TR < T <  To, the 
spectrum is again related to the surface stiffness coefficient. These results, 
relations (6.2)-(6.3), are presented in Section 6, which also contains some 
concluding remarks. 

Our study does not include consideration of the scaling forms at TR 
and Tc, where TR = 0 in 2d, TR > 0 for lattice 3d modelsJ 12) For noncritical 
temperature values, our relations provide a new method of estimating the 
surface stiffness coefficient and the step free energy by numerical TM 
calculations. 

2. GENERAL F O R M A L I S M .  SYSTEMS WITH PERIODIC 
B O U N D A R Y  C O N D I T I O N S  

In order to introduce the notation in a more familiar and relatively 
well-studied framework, as well as to discuss certain finite-size effects for 
later use, we consider first the case of the periodic boundary conditions. In 
d >~ 2 dimensions, we consider L d- 1 x oo cylinders at fixed temperature in 
the range 0 < T < Tc. Here L is a linear size of the cross section, of area 

A - L  a-1 (2.1) 

The cylinder partition function can be evaluated by building it up from 
slices of fixed microscopic length b along the infinite direction: In each 
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application of the TM a slice of volume bA is added in a standard fashion. 
The eigenvalues of the TM will be denoted A j, with 

A0>AI  > A 2 >  -.. (2.2) 

Some of the eigenvalues may be multiply degenerate. 
The f ree  energy density of the cylinder, measured in units of k B T, is 

given by 

f ( L )  - - (bA)  -1 In A o (2.3) 

where f ( L )  also depends on T and possibly on the cross-section shape. 
(Typically, we will display only the size dependences of various quantities.) 
We do not necessarily assume hypercubic shapes. Thus, (2.1) can be con- 
sidered as a definition of L. However, we assume that the cross-section 
shape is fixed, while L is varying and large as compared to all the 
microscopic (lattice) lengths. For periodic boundary conditions the size 
dependence is weak, (13) 

f ( L  ) - f ( oo  ) ~ exp( - L/~ ll) (2.4) 

Here ~ll is some length of the order of the bulk single-phase correlation 
length. 

Finite-size correlation lengths corresponding to the spectral gaps can 
be introduced via 

~j(L) = b [ln( Ao/Aj)  ] -1 (2.5) 

where j = 1, 2,.... The buildup of a phase transition is typically accompanied 
by the divergence, as L ~ 0% of one or more of the correlation lengths 
(j(L). The first-order transition (phase coexistence) buildup in the periodic 
Ising-type cylinder is associated with exponential divergence (4'5) of ~ ( L )  
only. The other extreme is represented, e.g., by the critical point spectrum, 
where an unbounded number of ( j(L) diverge linearly with L. (1) 

Generally, relations (2.3) and (2.5) yield the following form for the 
diagonal representation of the TM, 

e -bAf(L) diag[1, e b/~l(L), e--b/~2(L),...] (2.6) 

(Here entries corresponding to multiply degenerate eigenvalues must be 
appropriately repeated. We neglect this feature for simplicity.) The longest 
length scale of variation of some of the finite-system correlation functions is 
fixed by ~I(L), where we assume that at least ~ I ( L ) ~  oe as L ~  oe. 
Calculation of such correlations involves the TM raised to the power of 
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order ~/b, i.e., applied ~ l / b  times. In the diagonal representation, the 
~l/b power of the TM is 

e-~'AIdiagE1, l/e, e -r162 e-r (2.7) 

As L ~ 0% only the entries corresponding to the subset of 4i (J~> 2) such 
that the limits 

lira [(j(L)/~,(L)] (2.8) 
L ~ o v  

are finite remain nonzero. Other entries in (2.7) vanish typically exponen- 
tially or faster as L --* oo. 

Unfortunately, the diagonal form of the TM is generally not known. 
The above heuristic arguments suggest, however, that there exists an 
approximate reduction of the TM to a subblock such that only the eigen- 
values corresponding to the largest divergent finite-size length scales will be 
included. Thus, a subspace of the eigenstates asymptotically degenerate 
with the j = 0 eigenstate is singled out. Such an effective TM can be con- 
structed by phenomenological considerations. ~s'6) It can range from a 2 • 2 
matrix, e.g., for periodic Ising cylinders, ~s) to an infinite-dimensional matrix 
(operator), e.g., for n-vector cylinders. ~6) More generally, the size of the 
reduced TM can be L dependent: see, e.g., Section 5. 

Several studies (2'4'5'7'1~ suggest that for periodic Ising-type cylin- 
ders only the leading-gap correlation length ~I(L) diverges as L ~  ~ .  A 
similar property is also true for free boundary conditions. ~7'~~ The 
predominant configurations of an A • ov cylinder are alternating regions of 
+ or - spontaneous magnetization, persisting over an average distance 
~I(L), separated by fluctuating interfaces running transverse to the infinite 
dimension (cylinder axis). The energy cost of one such interface is well 
approximated by kBTa• where a• is the bulk surface tension for trans- 
verse interfaces (interfacial free energy per unit hyperarea and per kB T). 
Note that cr• and many other "constants" used below are actually Tdepen- 
dent. Consideration of the "dilute gas of interfaces" then yields ~4,~v) the 
large-L form 

~,(L) ~ 6 exp[6(L) A] (2.9) 

where 6 is some microscopic length, while 

lim i f(L) = ~•  (2 .10)  
L ~  

The interpretation of ~(L) and the rate of convergence in (2.10) will be 
discussed shortly. 
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The diagonal representation of the reduced 2 x 2 TM is 

e bAT(L) diag[1, e -b/r (2.11) 

Upon a 45 ~ rotation, and expanding in b / ~ ,  keeping the leading-order 
terms only, this matrix can be put in a more symmetric form, 

{exp[ - b A f ( L ) ]  
b b exp[_5(L)  A] t 2~ 

exp [ - ~(L) A ] 1 

(2.12) 

This representation is reminiscent of the usual TM formulation. The prefac- 
tor in (2.12) is just the Boltzmann weight corresponding to the energy of a 
single-phase (+  or - )  slice b x A added in one TM application. The non- 
diagonal terms contain an extra Boltzmann factor corresponding to the 
interaction energy, of order k B T a •  at the contacts of the + and - 
phases. This interpretation is obviously not rigorous. The result (2.12) is 
similar to the form used (5) in the studies of finite-size rounded first-order 
transitions, for which one also includes the magnetic energy in the diagonal 
matrix elements. (5) 

Consider next the convergence rate in (2.10). Studies (as 2a~ of finite-size 
corrections for the interfacial free energy a(L)  of interfaces of linear extent 
L in approximately cubic samples suggest that for large L, 

c r ( L ) - a ( c ~ ) ~ L  ~ a [ l n L  + O ( 1 ) ]  (2.13) 

for periodic rough interfaces in general d, and 

a(L)  - ~r(oo ) ,~ (2L) - 1 [In L + O(1 )] (2.14) 

for f r e e  (rough) interfaces in d =  2. [For free boundary conditions in d >  2, 
the leading finite-size correction is the (nonuniversal) 1/L term. We will not 
consider this case in detail here.] For ~(L), it has been conjectured (5'22) 
that 

6(L)  - a I ~ wL 1-a[ ln  L + O(1)] (2.15) 

for periodic boundary conditions in general d, corresponding to 

~l oc L w exp(a• (2.16) 

where for d =  3 the value of w may be different for T>  T(R • and T<  T(R • 
[Note that for T<  T(R • the purely finite-size correction, as in (2.13), should 
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be exponentially small. ] Relation (2.16) also applies for free boundary con- 
ditions in d =  2 only. Exact Ising model calculations in d =  2 yield (5'7'1~ 

Wperiodic(2d ) = 1/2 (2 .17)  

wrree(2d) = 0 (2.18) 

The fact that the coefficient w in (2.15) differs from the coefficients of the 
L 1 aln L terms in (2.13)-(2.14) is intriguing. It has been suggested (=) that 

an extra factor ~ 1/x//-A enters in {1 as a normalization of small fluc- 
tuations (distortions) about the lowest free energy intrinsic interfacial 
profile. However, intrinsic profile concepts can be defined unambiguously 
only in continuous mean-field-type theories. 

3. TWO-DIMENSIONAL SYSTEMS WITH INTERFACES: 
CONTINUUM FORMULATION 

In this section we begin our study of Ising-type systems with interfaces 
by first considering L x oe strips in d =  2. The + -  or ap boundary con- 
ditions force an interface in a system, running along the strip. For + -  
boundary conditions, this is illustrated in Fig. 1. For the ap boundary con- 
ditions, the interface can wind around the strip, which has the topology of 
a cylindrical surface. As illustrated in Fig. 2, the transverse coordinate y 
must be considered mod(2L). In both cases, one can use random-walk-type 
arguments to analyze the spectrum of the TM. (8'tl) We consider such 
models in the next section. Here we will utilize a capillary-wave-type 
approach (23-25) to study the general features of the TM spectrum. 

We assume that the orientation of the strip coincides with a symmetric 
lattice axis (which is typically the case in numerical applications(I)), such 
that the angle-dependent surface tension cr(0), when measured per unit 
projected distance along the strip, has a quadratic minimum, (26) 

a(O)/cos 0 = r + (1/2)~c0 2 + 0(0 4) (3.1) 

L 

+ + + + + + + + + + + + + + + + + + 

Fig. 1. 

L ~ X 

Interface in an L x  0o Ising-type strip induced by the + -  boundary conditions. 
Other features shown are explained in the text (Section 3). 
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4 2 5 
y=l_ 

y=O 
4 2 5 

Fig. 2. Antiperiodic boundary conditions impose a mod(2L) topology on a strip. Here the 
antiperiodic seam is shown in the middle (dotted line) for clarity. The interface winds 
periodically at the points marked 1, 2, 3. The three heavy-dotted points on the interface have 
the same y coordinate when measured in 0 ~< y ~< L. However, two windings are required to 
reach an identical column configuration. The third (rightmost) winding at 3 illustrates a near- 
kink configuration: see text (Section 3). 

with 

z = o-(0) > 0 (3.2) 

x = ~r(0) + a"(0)  > 0 (3.3) 

These convent ions  are il lustrated in Fig. 1, where a por t ion  of the interface 
of projected length l and average inclination angle 0 has been singled out. 
The free energy cost of  this inclined interface is k B Ta(O)(l/cos 0). Thus,  the 
surface tension per unit projected length (and per kBT) is just  the lhs of 
(3.1). (26) Note  that  the form (3.1) is characterist ic of  rough interfaces and 
thus applies for all 0 < T <  Tc in 2d. The quant i ty  ~: = x (T)  is termed the 
surface stiffness coefficient. 

In order  to construct  the effective T M  for the longest scale correla- 
tions a long the strip, let us consider the energy of a typical configurat ion 
depicted in Fig. 1. First, we note  that  the free energy f (L)  of the strip no 
longer converges exponent ial ly  to the bulk result [see (2.4)]. Indeed, for 
the ap bounda ry  condit ions it is well established ~4) that  

fap(L) - f ( ~ )  ~ z/L + O(e L/ej/) (3.4) 

The added term, r/L, represents the free energy contr ibut ion of the inter- 
face. For  the + - bounda ry  conditions,  we have 

f + _ ( L ) -  f(ov),,~(z + 2g)/L + g2/(2~L3)+o(L -3) (3.5) 

where we in t roduced free energy contr ibut ions  g/L for each wall, as well as 
the leading capil lary f luctuat ion contr ibut ion,  ~12'27'28! the form of which will 
be justified below. We remind the reader  that  various quantit ies here, 
z, ~c, g, etc., are implicitly T dependent.  
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In order to estimate the energy of the interracial wandering or 
"fuzziness," we use the capillary wave approach. (23-2s) In this coarse- 
grained description the interface is modeled by the single-valued function 
y(x) (see Figs. 1 and 2). The Hamiltonian (in units of kB T) in 2d is 

H= ~ f .... dx[y'(x)]2-t'-(Xmax-Xmin) E 
Xmin 

(3.6) 

To have a finite free energy density, one must supplement (3.6) with cutoff 
prescriptions (23'24) and also allow for an additive regularizing term propor- 
tional to E in (3.6), where E is some cutoff and ~-dependent function. 

Our aim is to identify the effective TM corresponding to (3.6). The 
detailed calculation is rather complicated and is not reproduced here. 
Instead, we first state the result and then offer arguments for its validity. 
The TM for (3.6) is approximately (see below) proportional to the differen- 
tial operator 

(• 
/ ( =  exp \2~ dy2,] (3.7) 

For the + - boundary conditions,/s operates on functions O(y) satisfying 

q,(L) = O(o)= 0 (3.8) 

where 0 <~ y <~ L. For the ap boundary conditions, we have 0 ~< y <~ 2L, and 

O(2L) = O(0) (3.9) 

Thus, the eigenstates of/s satisfying/~On(Y) = 2,~n(y),  are given by 

In both cases 

7~n 
~(~+ -)  oc sin -~- y, n =  1, 2,... (3.10) 

0(~aP)ocexp i--~y , n = 0 ,  +1, __2,... (3.11) 

,~,=exp ( n2n2b~ 2~Z-~j (3.12) 

In order to substantiate the equivalence o f / (  with the TM of (3.6), 
consider the case of unbounded y, i.e., disregard the details of the boundary 
effects. Then, for a slice of length b along the x axis, with the y values fixed 
at Yl and Y2 at the ends, the capillary energy can be estimated by replacing 

Y'--* (Y2-  y~)/b (3.13) 
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Thus, we get dH(y l ,  Y2) ~ (tc/2b)(y2- Yl) 2 + bE. After discretizing y in 
steps of, say, a, we can define the appropriate TM, with elements 

e -be exp - ~-~ (Y2- yl)2 (3.14) 

However, the second factor here is just the diffusion kernel. Thus, in the 
continuous-y limit (a-*0), one can employ the standard mathematical 
results (29) to prove that the "capillary" TM reduces to 

(2~b'] e-bEk (3.15) 
1/2 

ZYdU 

A more careful calculation (not detailed here) takes into account two 
previously neglected aspects of the problem. First, the approximation 
(3.13) must be improved to have the resulting kernel (3.14) consistent with 
the boundary effects. Second, the discreteness of the underlying lattice 
structure, i.e., the discretization of the x and y values in steps of b and a, 
respectively, makes the equivalence of the operator (3.15) with the lattice- 
model "capillary" TM approximate. The equivalence is restricted to 
a subspace of functions spanned by the eigenstates (3.10) or (3.11) 
corresponding to the largest eigenvalues: the precise condition is 

n 2 ~ min(xL2/b, L2/a 2) (3.16) 

Thus, the correspondence becomes exact in the large-L limit. 
The full effective TM of the ap boundary conditions can now be 

represented by the operator 

C e x p [ - b L f ( ~ ) - b r +  b d R ] (ap) (3.17) 

where we used (3.4). Here the coefficient C = - (2rcb/xa2) 1/2 e -6E remains to 
be determined. On physical grounds, however, one must select E to have 

C---1 (3.18) 

to prevent the generation of 1/L terms in f ( L )  beyond those in (3.4). 
Similarly, by examining (3.5), we arrive at the following effective TM for 
the + - boundary conditions: 
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The operators (3.17) and (3.19) operate on functions satisfying (3.9) or 
(3.8), respectively. 

For the largest TM eigenvalues in 2d, we thus obtain the prediction 

7~2j 2 ] 
A}aP)~ exp [ -bLf(oo) - br - b ~ j  (3.20) 

where 

j=  O, 1, 2,... ~ rain(Life~b) 1/2, L/a) (3.21) 

and the eigenstates for j > 0 are doubly degenerate. Similarly, 

A } + - ) ~ e x p [ - b L f ( o o ) - b ( ~ + 2 g ) - b  ~2(j+1)2] 2KL2 (3.22) 

where the j values are as in (3.21), and the eigenstates are all non- 
degenerate. For the leading correlation lengths we get 

~(ap) ~ 2KL2 
j /~2j2 (3.23) 

2KL 2 
4}+ -) ~ rc2j(j + 2) (3.24) 

where j~> 1 is limited as in (3.21). The correlation lengths provide direct 
measures of the surface stiffness coefficient ~:. Note that the 1/L 3 term in 
(3.5) is also reproduced. 

The algebraic behavior of the correlation lengths in 2d systems with 
interfaces has not been emphasized in the literature until recently. ~7-11) One 
can raise the issue of why introducing transverse interfaces in addition to 
the longitudinal one should not be considered an important fluctuation 
yielding entropy gain without too much energy cost, as it is in the case of 
periodic boundary conditions. For the + -  boundary conditions, such a 
domain formation is very costly in energy since the phases near the walls 
are fixed. For the ap boundary conditions, the argument is more subtle, 
and is illustrated by the third winding (points 3) in Fig. 2. Such a rapid 
winding mimics the addition of a transverse interface on top of a smooth 
longitudinal interface. It is obvious, however, that the entropy can be 
gained with the investment of less bending energy, by more gradual win- 
dings. 

4. T W O - D I M E N S I O N A L  SYSTEMS:  SOL ID -ON-SOLID  
MODELS,  A N D  S O M E  EXACT RESULTS 

In this section we consider the TM spectrum of the solid-on-solid 
(SOS) models of interface fluctuations in 2d strips. These results serve to 
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check the continuum formalism of Section 3, and illustrate the pattern of 
corrections to (3.23)-(3.24). We also compare (3.23) for j =  1 with the exact 
result {7'1~ for the transverse lsing model. 

The SOS modeling is essentially equivalent to the random walk 
arguments. (H) However, we use the restricted solid-on-solid (RSOS) 
model (2~176 (which finds further applications in the next section). We also 
outline the results for the unrestricted solid-on-solid (USOS) model (2~ 
which is closer to the formulation of ref. 11. 

The interface in the SOS approximation is described as a directed self- 
avoiding walk of + 2 and ___ 9 steps. Each + 2 step is of length b. The + )) 
steps will be assumed to have length a. Let us assume that allowed x and y 
values are 

x = b n ,  n = 0 ,  +_1, +2,... (4.1) 

y = am, m = 1, 2,..., L /a  (4.2) 

For  the RSOS model, at most one +-9 or --9 step is allowed after each 
+ ~  step. For the USOS model, several +33 or several - -9  steps are 
possible at fixed x. 

In the case of the + - boundary conditions, the allowed y values are 
kept in the range (4.2). No +3~ steps are possible from y = L ,  and no -33 
steps are possible from y = a. For the ap boundary conditions, a unique 
labeling of configurations requires doubling the y range (see Fig. 2), i.e., 
m = 1, 2 ..... 2L/a. The + 33 step from y = 2L ends at y = a, while the - -9 step 
from y = a  ends at y =  2L. For  the ap USOS case, the self-avoidance 
condition restricts the walk to have up to (L/a - 1) of the + 33 or - -9 steps 
at a given x. 

We assign Boltzmann weights 

u I for _33 steps (4.3) 

ull for + ~  steps (4.4) 

The SOS models approximate interfacial properties at low T of a rectangular- 
lattice 2d Ising model of spins ___ 1 located at the x, y coordinates 

x = b ( n + l / 2 ) ,  n = 0 ,  +1, _+2 .... (4.5) 

y = a(rn + 1/2), m = 0, 1,..., L/a  (4.6) 

Thus, there are L/a  + 1 spins in each fixed-x column (connected by L/a 
bonds). For  the + -  boundary conditions, the spins at y = a/2 are fixed 
at - 1 ,  the spins at y = L + a / 2  are fixed at +1,  while the spins in the 
remaining L / a -  1 rows can take on any value ( + 1). For  the ap boundary 

822/54/3-4-12 
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conditions, the spins in the L/a rows at y = a / 2 ,  3a/2,..., L-a~2 can 
fluctuate, while the spins at y- -L  + a/2 must assume minus the values of 
the spins at y = a/2, at the same x. The nearest neighbor ferromagnetic 
coupling constants along x and y, measured per kB T, will be denoted by 
Kx>O and Ky>0,  respectively. For low T, the SOS approximation is 
obtained by identifying 

u i  - exp( - 2Kx) (4.7) 

ull - exp(-2Ky)  (4.8) 

Thus, 

0 < uil ,  u i  < 1 ( 4 . 9 )  

The SOS models have been studied extensively in the literature. (2~176 
For the RSOS case, we quote (2~ 

1 1 ~RSOS = --~ ln[uli( + 2u• (4.10) 

b (1 +2u• 
~RSOS = ~-2 \ ~ j  (4.11) 

(Corresponding USOS results are also given in ref. 20.) Since these SOS 
models do not account for the free energy of the coexisting phases or for 
wall interactions, we use 

f~sos(Oe ) = 0 (4.12) 

g~sos = 0 (4.13) 

when comparing with the results of Section 3. 
The TM formulation of the SOS models is well known. Specifically, 

the TM elements t(ml, mz) for the RSOS model are given by 

t(m, m) = ull (4.14) 

t(rn, m 4- 1) = uit u• (4.15) 

with all other TM elements vanishing. In (4.14)-(4.15), we take the index 
values 1, 2 ..... L/a for the + -  boundary conditions, but m is periodic 
mod(2L/a) for the ap case. [Thus, (4.15) includes, e.g., t(1, 2L/a)= utl u• 
etc.] The eigenvalue equations 

t(m, p) ~(p) = A~b(m) (4.16) 
P 
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are solved by linear combinations of exp(+iqm), in fact, for all four SOS 
models mentioned here, i.e., RSOS or USOS, with + - or ap. Specifically, 
we find 

~t(+ )(m ~ Rsos~ j o c s i n q m  

with 

• ( a p )  ~.,~ exp(iqm) R S O S ~ " '  ! OQ 

(4.17) 

(4.18) 

ARSOS = UlI(1 + 2U• COS q) (4.19) 

in both cases. The values of q are "quantized" as follows: 

q(,+ )=nna/(L+a), n = l ,  2 ..... L/a (4.20) 

q(~aP)=nzca/L, n = 0 ,  +1, _+2,..., +_(L--a)/a, +L/a (4.21) 

Note that all but the largest and the smallest eigenvalues (n = 0 and L/a) in 
the ap case are doubly degenerate. 

Consider the small-q behavior, A(q) = url(1 + 2ui)  - uji u i  q2 + O(q4). 
By using (4.10) (4.11), we can rearrange this expansion in the form 

A(q) =exp - b ~ s o s  2a2~CRSO-----~ + O(q 4) (4.22) 

With (4.12), (4.13), and (4.20), in which we assume L ~> a, and (4.21), it is 
evident that the general results (3.20), (3.22) for the largest TM eigenvalues 
are in fact confirmed for the RSOS model. The small-q expansion applies 
only to the largest RSOS eigenvalues, with the index n in (4.20)-(4.21) 
satisfying 

In[ ~ L/a (4.23) 

This is consistent with (3.21), since 

[L(K/b)I/2]Rso s = (L/a)[(1 + 2u•177 m > Z/a (4.24) 

Finally, note that the + -  case eigenfunctions O(m) given by (4.1.7) have 
the endpoint (m = 1, L/a) values 

O(1) = sin \ L + a J '  ff =sin  \L--~aJ = ( - 1 ) "  sin \ L + a J  

(4.25) 

Thus, for n satisfying (4.23), the wave functions are vanishingly small at the 
endpoints: compare the "continuum" conditions (3.8). 
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We also worked out the detailed solution for the USOS model (not 
reported here). The new interesting features are as follows. The q depen- 
d~nce of A(q) is modified as compared to (4.19), and in fact A (+-)(q) and 
A(aP)(q) are no longer identical, but differ in order u~/~. The equal-space 
"quantization" of the q values, (4.20) (4.21), is valid only up to corrections 
of order L 2 in q,. The general predictions (3.20)-(3.22) are confirmed for 
the USOS model as well. 

Consider now the full Ising spin model, with couplings K~ and Ky, as 
described above, without assuming the SOS approximation. One can 
consider the so-called "transverse Ising model" limit of extreme anisotropy, 

K~ ~ 0% Ky ~ 0 (4.26) 

with the fixed value of the parameter 

7 = Ky 1 exp(-2Kx)  (4.27) 

The Ising critical point is then fixed at 7c = 1, with 7 < 1 corresponding to 
T <  Tc. For the leading spectral gap of the transverse Ising model, exact 
results have been reported, (7"9-m which we "translate" to the correlation 
length. In the "transverse Ising model" literature, the (dimensionless) 
spectral gaps are considered, which are given by our b(Ky~j) -~. (This 
expression includes the exact proportionality factor.) Thus, in the limit 
Ky--* O, with fixed 7, 

b(l - 7) L2 
~I(L),.~ rt27a2Ky [ t  + O(L-2)]  (4.28) 

In order to check this against the general result (3.23), with j =  1, we quote 
the exact Ising model tc value, (2~ 

b sinh(bzising) sinh(2Kx) 
/~Ising = a 2 sinh(2Ky) (4.29) 

where 04) 

1 
"Clsing =~ [2Ky + ln(tanh Kx)] (4.30) 

The limiting behaviors of these quantities are easily calculated, 

zising ~ 2Ky(1 - 7)/b (4.31 ) 

b(1-7) 
~cising ~ 27a2Ky (4.32) 
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Note that (4.31) should not be confused with the familiar limiting relation 

(aa• - 2Kx + In(tanh Ky) "~ - l n  7 (4.33) 

Finally, substituting (4.32) in the j =  1 relation (3.23) reproduces the exact 
result (4.28). 

5. T H R E E - D I M E N S I O N A L  S Y S T E M S  BELOW THE 
R O U G H E N I N G  T E M P E R A T U R E  

In d = 3, we add the z axis perpendicular to the xy plane (Fig. 1 ). For 
definiteness, we consider cylinders of rectangular cross section, L x M x 0% 
where 

O<~z<~M (5.1) 

The + -  or ap boundary conditions are imposed in the y direction, as 
before, extended to all the allowed z values (5.1). In the z direction, we 
assume periodic boundary conditions, although we will mention the 
modifications required for free boundary conditions along z. 

Below the roughening temperature, i.e., for fixed T in the range 

0 <  T <  T R (5.2) 

the interface will be microscopically flat on the average, over large distan- 
ces, and parallel to the xz plane. The predominant fluctuations yielding 
entropy gain without too much energy cost will be steps (ledges) between 
different average y values. Upward (+)~) or downward ( - ~ )  steps are 
equally probable; however, the average distance ~I(L, M) between the steps 
will be exponentially large: see below. 

We follow here the conventional "terrace-ledge" type model (12"34'35) of 
3d interfaces for T <  TR. Obviously, there is no natural continuum limit 
here: the ledges are microscopic. Therefore, an underlying microscopic 
lattice structure must be introduced. For definiteness, we assume a simple 
cubic lattice model, with cubic axes along x, y, z. This choice is typical in 
numerical studies. However, it proves instructive to distinguish the lattice 
constant b along the x direction from that in the y direction, denoted by a. 

Usually the step free energy s is defined (19) by imposing a tilt in an 
interface, induced by fixed boundary conditions in a large, approximately 
cubic sample. If the interface rises a distance Ay due to the tilt, then for 
T <  TR it consists of terraces separated by Ay/a steps (ledges). The free 
energy excess of the tilted interface, as compared to the free energy of a 
planar interface in the same sample, is proportional to Ay and also to the 
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length of the steps (M in our geometry). We define s as such an excessive 
free energy of a single ledge, i.e., Ay = a, measured per unit step length and 
per kB T. 

The above discussion suggests that the appropriate discrete model for 
the reduced TM for T <  TR is the RSOS model (Section4) with the 
Boltzmann weight for the + 2  steps replaced by 

ull ~ e x p [ - b L M f ( L ,  M)] 

The weight for the +_ ~) steps is 

where 

(5.3) 

lim g(L, M) = s (5.5) 
L , M ~ c ~  

and f(L, M)~-f(L, M); see further below. Recall that we keep the cross- 
section shape fixed. Thus, the limits in (5.5) are taken with fixed L/M. 

Before discussing the functions jTand ~ entering (5.3)-(5.4) in detail, let 
us consider the implications of these relations. The weight for the trans- 
verse (+_ ~) steps u l  is exponentially small in M. Note that the results for 
various SOS models (e.g., RSOS vs. USOS) typically differ only in O(u2). 
Thus, the simplest RSOS model is sufficiently general. Neglecting O(u~) 
corrections, we can replace relation (4.t9) by 

A(q) ~- exp{ -bLM~(L,  M) + 2 cos q exp[ -Mg(L, M)] } (5.6) 

where we used (5.3), (5.4). Here q is "quantized" according to (4.20) or 
(4.21). Relation (5.6) should provide the correct asymptotic description not 
only for small q, but more generally for all the L/a or 2L/a (for + - or ap, 
respectively) largest eigenvalues of the TM, forming a near degenerate 
multiplet as L, M ~ oe. Thus, 

where j = 0, 1,..., L/a - 1, and 

A}ap) ~ exp {-bLMjT(L, M) + 2 cos (~-Z) exp[- M~(L, M) ] } (5.8) 

where j = 0 ,  1, 2,..., L/a, and the j-~O, L/a eigenvalues A} ap) are doubly 
degenerate. 

exp[-Mg(L, M)]} 
(5.7) 

u I -~ exp[ - M~(L, M)] (5.4) 
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Relations (5.7)-(5.8) with j = 0 imply that interfacial fluctuations contribute 
only exponentially small terms to the cylinder free energy density for 
T < T R, where 

f(L, M) =- -(In Ao)/(bLM ) (5.9) 

For the ap boundary conditions, a relation of the form (3.4) applies, 

f.p(L,M)-f(o%oo)~'c/L+O(e L/r M/r (5.10) 

The step fluctuation contribution is essentially just one of the O(e MIni) 
type terms. The function )7(L, M) entering (5.3) and (5.8) can be formally 
defined by 

2 
f~p(L, M)=f(L, M)+ b ~  exp[-Mg(L,  M)] (5.11) 

However, the consideration of its detailed size dependences is no more 
useful than that forf(L, M). A similar line of argument applies for the + - 
boundary conditions, where the wall free energy must be included in (5.10) 
[see (3.5)]. For both boundary conditions along y, if we change the z 
boundary conditions from periodic to free, additional 1/M wall as well as 
1/(LM) edge terms (for + - along y) will enter. 

We now turn to the issue of the convergence rate in (5.5). The 
fluctuations of the "dilute gas" of steps of length M (along the z direction) 
are reminiscent of the dilute gas of interfaces in 2d (Section 2). Therefore, a 
relation of the type (2.15) should apply, 

g(L, M) - s ~  wM-l[ ln  M +  O(1)] (5.12) 

and it is tempting to conjecture that the w values are identical to those 
in (2.17)-(2.18) for the periodic (w=l /2)  and free (w=0) boundary 
conditions along z. However, such a conjecture requires numerical tests: 
We will keep w general. Thus, we substitute in (5.7)-(5.8) 

exp[-Mg(L,  M)] ~ p-~M -w exp(-  Ms) (5.13) 

where • is some T-dependent function of dimensions (length) -w, which 
may also depend on the boundary conditions along z. (Similarity of finite- 
size effects for fluctuating steps in 3d with interfaces in 2d has been 
explored in a different context in ref. 36.) 



752 Privman and ,~vraki6 

For the leading finite-size correlation lengths, we get 

~.+_)(L,M)..~b#MWeMS r r ta ( j+2)  . rcaj -] i ~ L sin 2--~L~ ~ sin ~-(k--~- a) J (5.14) 

where j = 1 ..... L / a -  1, and 

[ .  7zaj\ -2 
~)~P)( L, M) ~ b#MW e M~ Iksm -2-L) (5.15) 

where j - -  1 ..... L/a. For the longest correlations, one can further expand 

~+ ) ~4b#L2M w exp(Ms) 
Cj~ L/a ~ ~ j - - ~  (5.16) 

4b#L2M w exp(Ms) 
~(ap)  ~ Tcza2j 2 (5.17) j ,~ L/a 

The leading correlation lengths provide direct measures of the single-step 
free energy s for fixed 0 < T <  T R. Recall that #(T) and w depend on the 
boundary conditions along z, and it is likely that for the periodic and free 
cases we have w = 1/2 and 0, respectively. Finally, note that the absence of 
a continuum limit here is seen explicitly in that the lattice spacings a and b 
enter (5.11) and (5.14)-(5.17). 

6. THREE-DIMENSIONAL SYSTEMS ABOVE THE 
ROUGHENING TEMPERATURE.  CONCLUDING REMARKS 

For 3d systems with T fixed in 

TR < T< Tc (6.1) 

the interface is rough, i.e., strongly fluctuating. As in the d =  2 case, we will 
assume that the cylinder is oriented symmetrically with respect to the 
underlying lattice structure, in such a way that the surface tension (free 
energy per unit interfacial area and per kB T), when considered per projec- 
ted area, has a parabolic (quadratic) minimum with respect to arbitrary 
inclinations. Two-angle parametrization of inclinations in 3d, selection of 
the principal axes, and the concept of the principal stiffness coefficients ~:, 
and K2, etc., have been discussed, e.g., in ref. 19. For our purposes here it is 
sufficient to quote that for inclinations that keep the interface perpen- 
dicular to the xy plane, and which are therefore specified by one angle 0, 
relations (3.1)-(3.3) apply. (19) 
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The longest wavelength capillary modes, setting the largest length 
scales ~j(L, M), "propagate" along the cylinder axis. These fluctuations 
correspond to interfaces remaining on the average flat and parallel to the z 
axis in the cross section, but with a slowly varying y coordinate. Thus, the 
relevant modes are essentially the same as in the 2d case, with the effective 
stiffness M~c. (Note that the units of this product are those of x in 2d.) We 
therefore conclude that for the 3d Ising-type systems at T R < T< To, 

2xML 2 
~ap) ~ ~2j2 (6.2) 

2xML 2 
r162 )~ (6.3) 

J ~ ~r2j(j+ 2) 

for 

j = 1, 2,... ~ L/a (6.4) 

where we used (3.23) (3.24). 
If the boundary conditions in the z direction are periodic, detailed 

predictions also can be made for the cylinder free energy. We only quote 
the results here, 

fap(L, M ) ~  f ( ~ ,  ~ ) +  z/L (6.5) 

f+ ( L , M ) ~ f ( ~ ,  ~)+( 'r+2g)/L+~2/(2xM2L3) (6.6) 

In summary, we preseted detailed theoretical predictions for the 
largest TM eigenvalues in the 2d and 3d cylinder geometries with interfaces. 
It is hoped that our formulas will be useful in numerical calculations of 
~(T) and s(T). Several topics have not been addressed here. These include 
scaling forms near Tc and TR, as well as studies of more complicated 
boundary conditions, of the type considered in refs. 7-11. Little is known 
about the global structure of the TM spectrum for systems with interfaces 
and on the development of bulk correlations in the L --* ~ limit. 
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